
SMucK: Symbolic Music in ChucK
Alex Han, Kiran Bhat, Ge Wang

NIME 2025 – Canberra, Australia

Center for Computer Research in Music & Acoustics (CCRMA) - Stanford University

What is SMucK?

SMucKish takes inspiration from other notation systems like Lilypond, ABC, and 
especially Leland Smith’s SCORE. It is designed to be compact, readable, and based 
on familiar notation conventions. Here are some examples of pitch and rhythm 
specifications in SMucKish:

Why SMucK?
SMucK makes programming in ChucK more musical.

SMucKish Input Syntax

SMucK is a library and workflow for creating music with symbolic data in the ChucK
programming language. It extends ChucK by adding the following core features:

SMucKish also allows users to write dynamics, text annotations, or arbitrary expression 
values as additional layers. Users can also enter names of chords (e.g. “Cmaj7”, 
“Bb7#9b13”) and scales (e.g. “minor”, “mixolydian”).

1) SMucKish: Text-based notational language for score input
2) ezScore: Data structures to represent score information
3) ezInstrument: Custom classes for linking sound design to scores
4) ezScorePlayer: Score playback and flexible time handling

Before SMucK, there were no built-in tools and abstractions in ChucK for many common 
musical concepts:

With SMucK, it is much easier to compose and program music using these concepts.

SMucK goes beyond static representation of score material, taking advantage of ChucK’s
strongly-timed, concurrent programming model to allow for dynamic and precise control 
over playback. SMucK scores are editable on-the-fly, and multiple scores can be played 
back concurrently, with independent timing control. These features make SMucK well 
suited for exploring compositional ideas, live-coding, and designing interactive systems.

Try SMucK!

SMucKish input can be parsed separately into float arrays or all at once into ezNote
objects, which in turn can populate ezMeasures, ezParts, and ezScores

ConclusionsWorkflow

@import "smuck"

ezScore score("a b c d");

myInstrument inst => dac;

ezScorePlayer player(score);

player.setInstrument(0, inst);

player.play();

score.duration() => now;

Here is an example of the SMucK workflow from 
composition to playback:

1) Write an ezScore with SMucKish or import from 
MIDI/musicXML

2) Create ezInstruments specifying sound synthesis 
chains

3) Instantiate an ezScorePlayer, enabling playback 
of the ezScore using their ezInstruments

4) Play the score!

The goal of SMucK is to draw upon the affordances of many existing symbolic music 
information systems: the compactness and readability of notation-focused languages, the 
interactivity with hierarchically-organized score data found in graphic score editors and DAWs, 
and the customizability and dynamic computing of live-coding frameworks. While SMucK is not 
the first system to do any one of these things, it offers an accessible, versatile, extensible, 
unified workflow for working with symbolic music within ChucK’s unique programming model. 

Our project is still in its infancy. It has not been widely tested and used by musicians and 
coders, and its features are still actively being improved upon. Since SMucK’s official release 
earlier this year, students at CCRMA have started using SMucK in their creative projects. 
Students’ feedback on the system on both the technical and artistic levels will inform our 
ongoing development directions. We are currently working on adding more tools for 
dynamically manipulating score contents, allowing more expressive information to be 
encoded, and supporting integration with other software, languages, and plugins. 


