NIME 2025 - Canberra, Australia

SMucK: Symbolic Music in ChucK

Alex Han, Kiran Bhat, Ge Wang

Center for Computer Research in Music & Acoustics (CCRMA) - Stanford University

What is SMucK?

SMucK is a library and workflow for creating music with symbolic data in the ChucK
programming language. It extends ChucK by adding the following core features:

1) SMucKish: Text-based notational language for score input

2) ezScore: Data structures to represent score information

3) ezlnstrument: Custom classes for linking sound design to scores
4) ezScorePlayer: Score playback and flexible time handling

Why SMucK?

SMucKish Input Syntax

SMucKish takes inspiration from other notation systems like Lilypond, ABC, and
especially Leland Smith’s SCORE. It is desighed to be compact, readable, and based
on familiar notation conventions. Here are some examples of pitch and rhythm
specifications in SMucKish:

key accidental octave octave
signature chord  mark “proximity handling” “down” flag
| T !
1, ) T T . T
9_ 1 . . ] . ' : | !
. R |
. I |
[
SMucKish input:  k3b c4:e:g f# g , bn C bn ci1 e gd a
_________________ R T
tie dotted rhythms triplet tuplet arbitrary float values
3 5
éig:::-: o o o o o @ o @ o @ o ~{@®") =) |
D) —
SMucKish input: e _e ¢ q. qg.. te te te q/5 q/5 g/5 q/5 q/5 1.7 3.14

SMucKish also allows users to write dynamics, text annotations, or arbitrary expression
values as additional layers. Users can also enter names of chords (e.g. “Cmaj7”,
“Bb7#9b13”) and scales (e.g. “minor”, “mixolydian”).

SMucKish input can be parsed separately into float arrays or all at once into ezNote
objects, which in turn can populate ezMeasures, ezParts, and ezScores

SMucK makes programming in ChucK more musical.

Before SMuckK, there were no built-in tools and abstractions in ChucK for many common
musical concepts:

 ch polyphony tempo articulation
Pitc measures scales dynamics

rhythm notes chords form

With SMuck, it is much easier to compose and program music using these concepts.

SMucK goes beyond static representation of score material, taking advantage of ChucK’s
strongly-timed, concurrent programming model to allow for dynamic and precise control
over playback. SMucK scores are editable on-the-fly, and multiple scores can be played
back concurrently, with independent timing control. These features make SMucK well
suited for exploring compositional ideas, live-coding, and designing interactive systems.

ezInstruments

class Guitar extends ezInstrument

{

setVoices (6) ;
HevyMetl guitar[6] => Nrev rev => dac;

fun void noteOn (ezNote note, int voice)

{

Std.mtof (note.pitch()) => guitar|[voice].freq;

guitar[voice] .noteOn (note.velocity())

fun void noteOff (ezNote note, int voice)

{

guitar[voice] .noteOff (1) ;

}

Workflow

Here is an example of the SMucK workflow from

- @import "smuck"
composition to playback:

@ ezScore score("a b ¢ d");

1) Write an ezScore with SMucKish or import from
MIDI/musicXML

2) Create ezlnstruments specifying sound synthesis
chains player.setInstrument (0, inst);

3) Instantiate an ezScorePlayer, enabling playback
of the ezScore using their ezInstruments

4) Play the score!

myInstrument inst => dac;

ezScorePlayer player (score) ;

player.play() ;

score.duration() => now;

Try SMucK!

Symbolic Music in ChuckK.

ezScore

ezMeasure ezMeasure ezMeasure ezMeasure

ezPart %% =

ezPart

ezPart

ezNote

— Pitch: 52
N N Duration: 1.0
Onset: 2.0

Dynamics: 0.6

ezScorePlayer

.play() .pause() .stop()

> (1] [m

Conclusions

The goal of SMucK is to draw upon the affordances of many existing symbolic music
information systems: the compactness and readability of notation-focused languages, the
interactivity with hierarchically-organized score data found in graphic score editors and DAWs,
and the customizability and dynamic computing of live-coding frameworks. While SMucK is not
the first system to do any one of these things, it offers an accessible, versatile, extensible,
unified workflow for working with symbolic music within ChucK’s unique programming model.

Our project is still in its infancy. It has not been widely tested and used by musicians and
coders, and its features are still actively being improved upon. Since SMucK’s official release
earlier this year, students at CCRMA have started using SMucK in their creative projects.
Students’ feedback on the system on both the technical and artistic levels will inform our
ongoing development directions. We are currently working on adding more tools for
dynamically manipulating score contents, allowing more expressive information to be
encoded, and supporting integration with other software, languages, and plugins.

Stanford I

LIE
University 2 @ 2 5




